i

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Efficient and Interactive Data Analytics
with WebAssembly

Karl-Pablo Sichert

D

H

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Efficient and Interactive Data Analytics
with WebAssembly

Effiziente und Interaktive Datenanalyse
mit WebAssembly

Author: Karl-Pablo Sichert
Supervisor: Prof. Dr. Thomas Neumann
Advisor: André Kohn, M.Sc.

Submission Date: September 15, 2020

I confirm that this bachelor’s thesis in informatics is my own work and I have
documented all sources and material used.

Munich, September 15, 2020 Karl-Pablo Sichert

Abstract

Data analytics is resource-intensive. At the same time, users expect that
analytics software quickly returns results to their queries. In this thesis, we
explore if WebAssembly is a suitable choice to build data analytics products that
can satisfy high expectations regarding efficient query execution. WebAssembly
is an emerging technology that allows running code with near to native speed
in a web browser.

Further, we are interested if data analytics tools can make creating dash-
boards more interactive while storing them in a concise human-readable repre-
sentation. We present a dashboard programming language that can be authored
both in a graphical and textual mode. The language is modeled as a superset
of SQL, can state data requirements and analytical problems in a declarative
way, and subsequently create data visualizations.

We find that our programming language is equally expressive as other popular
browser-based data analytics tools. However, we outperform them by one order
of magnitude for common analytical tasks, thanks to running a query engine
optimized for analytical query workloads in WebAssembly.

iii

Contents

Introduction

Data Analytics and Visualization

2.1 Analytics Desktop Software . . .
2.2 Graphical User Applications in Web Browsers
Distribution Model
2.2.2 HTML, SVG and CSS . .
2.2.3 JavaScript
WebAssembly
2.3 Databases for Analytical Query Workloads
In-Memory Databases . .
2.3.2 Columnar Data Storage .
2.3.3 Vectorized Query Execution

2.21

2.24

2.3.1

Related Work

4.1 C++/Emscripten

4.2 Protocol Buffers
4.3 Flex and Bison

Interactive Dashboards

5.1 Architectural Overview
5.2 Dashboard Programming Language
Language Concept and Goals
5.2.2 Grammar and Language Features

5.2.1

6 Evaluation

5.2.2.1
5.2.2.2
5.2.2.3
5.2.2.4
5.2.2.5
5.2.2.6

Program

Compiler Toolchain and Development Tools

Parameter Declaration

Load Statement

Extract Statement

Query Statement

Visualize Statement

6.1 Interaction with Dashboard Tool

6.2 Benchmarks
6.3 Limitations

8 Conclusion

Bibliography

Future Work

W 00 O Ui i W W et

— = =
3 Ot

N
o

21
21
22
24

28
28
30
30
31
32
32
33
34
36
37

39
39
43
45

47
48

49

iv

List

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6

of Figures

COVID-19 Dashboard

Business Intelligence and Analytics Desktop Software
HTML, CSS and SVG
Cwvs. WebAssembly L o
WebAssembly and JavaScript Interaction
Memory Hierarchy in a Classical Computer Architecture
City SQL Schema oo
Aggregating SQL Query oL
Row vs. Column Store Memory Access
Subdivision SQL Schema 0000
Join SQL Query
Vectorized Query Execution

Protocol Buffers Message Specification
Serializing Data in C++
Deserializing Data in JavaScript
Binary Protocol Buffers Message
LexerinFlex
Parserin Bison o oo
Grammar Derivation
Railroad Diagram

Architectural Overview of Data Analytics Tool
Program Grammar oL
Parameter Declaration Grammar
Load Statement Grammar
Extract Statement Grammar
Query Statement Grammar L
Visualize Statement Grammar

Interactive Program Input Mode
Inline Error Messages,
Dashboard Input Parameters
Dashboard Program with Visualization Widgets
Vega Lite Specification
Benchmarks

Resource count

1 Introduction

Data science is a field where new insights can be produced by analyzing a
vast amount of information. These insights are useful for backing up theories
by factual data or, more generally, allow individuals and organizations to take
a data-driven approach to decision making.

Hospital resource use

Daily deaths
Hospital resource use indicates how equipped a location is to treat COVID-19 ily deaths is the best ind fth fth " fthough
patients. Select All beds, ICU beds, or Invasive ventilators for descriptions of each Daily deaths is the best indicator of the progression of the pandemic, althoug|
there is generally a 17-21 day lag between infection and deaths. ~
measure. A
Allbeds ICUbeds Invasive ventilators Scenario ©

Today Today

th
it

.
Daily deaths

Mar1 Apr1 May 1 Jun1 Jul1 Aug 1 Sep1 Oct1 Nov1 Dect
Date

Mar1 Apr1 May 1 Jun1 Jul1 Aug1 Sep1 oct1 Nov1
Date

= = All beds needed (Current projection) = = ICU beds needed (Current projection) —— Observed (smoothed) = = Cumentprojection = = Mandates easing

= = Invasive ventilators needed (Current projection) Universal masks

All deaths specific to COVID-19 patients

Figure 1.1: Dashboard for COVID-19 metrics in the USA at https://covid19.healthdata.org. [1]

A notable example of the extensive use of data analytics and visualization has
been research around the coronavirus pandemic in 2020. Research institutes,
such as the Institute for Health Metrics and Evaluation, published interactive
dashboards to inform the public about current threat levels of the pandemic.
In Figure 1.1 two graphs are shown that track historical metrics for hospital
resource use and daily deaths in the USA attributed to the coronavirus, as well
as forecasts for the future development of those metrics depending on which
public health measures are taken.

To increase the impact of publishing new insights, suitably presenting results
is just as important as the aggregated data itself. To convince the public and
sponsors of their research, scientists are motivated to visualize their results so
that a conclusion can be drawn without much effort. In the case of the Daily
deaths graph, the future projections make it pretty clear that introducing a
universal mask mandate would be the best course of action. Color-coding the
Masks measure in green and the Fasing measure in red further suggest that
continuing to ease mandates would be dangerous.

These dashboards highlight a nice property of the web. They are very easy

https://covid19.healthdata.org

to share because the only thing needed to view them is an URL and a web
browser that is installed on virtually every device. However, most of these
dashboards send network requests to a centralized database server to resolve
analytical queries. The latency induced by fetching query results from the
network makes data exploration feel slow.

Recent technological advancements allow running programs in a web browser
almost as efficiently as native desktop programs, while still being safe from
memory vulnerabilities. This technology is called WebAssembly, and we want
to explore it to run a fully-fledged analytical database in the browser. That
way, queries can be executed locally, resulting in almost instantaneous results.

While viewing and sharing dashboards is easy, creating dashboards is still
a task mainly done by programmers. We want to explore building a data
analytics tool that allows data scientists to create dashboards without needing
prior programming experience. To accomplish this goal, the tool should offer
both a graphical and textual mode to create dashboards.

Throughout this thesis, we aim to answer how efficiently our data analytics
tool can process analytical queries and how interactive the dashboard creation
process is. We build up our arguments in the following order:

In Chapter 2, we first introduce the data analytics and visualization domain.
We look at how analytics desktop software is built, which capabilities web
browsers provide for creating graphical user applications, and how databases
are optimized for analytical query workloads. Regarding the capabilities of
web browsers, we emphasize how WebAssembly enables high-performance
computing.

In Chapter 3, we cover related work regarding data analytics applications in
web browsers.

In Chapter 4, we cover how several compilers work as a prerequisite to
understand how the interactive dashboard tool in Chapter 5 is built.

In Chapter 5, we are concerned with building an interactive dashboard
tool, introducing the system architecture, and a concept for a dashboard
programming language. We will present the grammar of the programming
language and which features it offers.

In Chapter 6, we compare our system with similar data analytics tools in a
qualitative and quantitative evaluation.

In Chapter 7, we present possible directions for our future work.

In Chapter 8, we reiterate our goals and how we approached them, and
conclude how our evaluation relates to our goals.

2 Data Analytics and Visualization

To assess the landscape of data analytics and visualization software, we
first look at the status quo of analytics desktop software. Subsequently, we
examine which capabilities web browsers provide to build software, with a
focus on graphical interfaces and high-performance code execution. Lastly, we
investigate how databases are optimized for analytical query workloads.

2.1 Analytics Desktop Software

Software that involves handling large amounts of data, doing intensive compu-
tations or rendering complex graphics has been traditionally developed with
native development toolkits for each operating system.

Using the low-level interfaces that operating systems provide has been the
only way to make programs performant when analytics software first emerged.
Computational power of hardware was more limited than today and the web
platform did not yet provide interfaces to use hardware capabilities efficiently.

Targeting specific platform features however also greatly reduces the porta-
bility of software. Either a lot of complexity needs to be introduced to adapt
and maintain code for each platform, or the software can only run on a limited
number of supported systems. For that reason, many software publishers
offered their products for Microsoft Windows only since they could not justify
investing development efforts into making their programs compatible with
other operating systems, e.g. Linux and macOS, with a smaller market share.

Profit %

n the North region

A «
4 o 2
/,,/4 had a total value of $861
£« ith a profit of $383

$1.01 1
Sales # Sales #

. d
e L

SUM(Sales): $135.887 []

Figure 2.1: Tableau [2] and Power BI [3], desktop software for business intelligence and analytics.

The way desktop software is built and distributed has also been very inflexible.
Because software has been distributed without the ability to upgrade it in

smaller increments, lengthy cycles of development and testing were completed
before a polished software product has been released. That way, new features
and improvements have only been provided in release cycles of typically a year
or longer.

Classical desktop products for business analytics by Tableau and Microsoft
can be seen in Figure 2.1. These products provide tools to formulate database
queries for analyzing data, visualize data in the form of interactive diagrams
and charts, and to generate business reports. Data can be loaded from various
sources, either from local spreadsheet and database files or external databases
and data warehouses. Query processing is then preferably handled by a local
database or by a powerful analytical database server when the data sets are
too large to fit into the desktop client.

By now, these companies also offer web-based solutions as a companion
for their business analytics products to take advantage of the flexibility and
portability of the web platform. The online tools provide a similar set of
functionality as their desktop counterparts, but rely on a server for most of
query processing.

One example of this is Tableau Online [4], which additionally offers features
to create and share dashboards via the web. Since fast in-memory processing
in web browsers is still a very recent technological advancement, they do not
take full advantage of it yet. Tableau features a collection of publicly shared
dashboards [5], where one can observe that these dashboards are to some extent
interactive. However, they rely on network requests to externally evaluate
queries and render elements and can be slow to return results.

2.2 Graphical User Applications in Web Browsers

In this section, we highlight how web-based analytics software can improve the
status quo of inflexible desktop software. Further, we go into detail how the
feature set of desktop software can be fully replicated in web browsers, both in
terms of graphical rendering capabilities and high-performance code execution.

2.2.1 Distribution Model

A big advantage of using web browsers as a platform for running applications
is the distribution model. Because of the vast access to information and online
services the world wide web provides, virtually every computer and smartphone
has a web browser pre-installed, or one that has been installed by the user’s
own preferences.

In contrast to desktop and mobile applications, executing web applications
requires no prior installation and no privileged access to the operating system.
This is due to the fact that web browsers provide a basic set of functionality
and interact with the operating system via interfaces that are designed to be
safe even when running untrusted code.

The web platform greatly lowers the barrier for users to use an application
and therefore provides access to a large amount of people who could potentially
be interested in using our system for data analytics. This does not only apply
to users who want to use our system to create dashboards, but also enables
creators to easily share dashboards with their peers.

2.2.2 HTML, SVG and CSS

While the first web browsers were limited to displaying documents with for-
matted text and images, their capabilities have significantly grown since then.
Nowadays, they are capable of arranging complex layouts not necessarily con-
strained to texts, and support a series of media formats for audio, video and
graphics.

The general structure and contents of a web page are described by the
Hypertext Markup Language Format (HTML) [6] in a tree-like structure. HTML
also allows to directly embed other markup and programming languages to
render more complex content.

Among those, the Scalable Vector Graphics (SVG) [7] format can be used
to draw sophisticated vector-based shapes. Vector-based graphics have the
advantage over pixel-based graphics that they can be scaled arbitrarily without
losing resolution, if modeled appropriately. Further, their text-based format
can be compressed easily and shapes based on mathematical equations can
be expressed very concisely, making SVG a format that requires very little
memory when stored. However, SVG can be more computationally expensive
to render, since the shapes must be rasterized first before being painted on
screen.

To style the appearance of nodes or their positioning on the document, nodes
can either be annotated inline or obtain styles using Cascading Style Sheets
(CSS) [8]. Styling nodes using CSS has the advantage that content and styling
can be separated and that a single rule in the stylesheet can apply the same
style to a multitude of nodes. To specify which nodes should be styled, so
called CSS selectors are used.

Figure 2.2 shows how a graphic can be composed by using HTML with
embedded SVG and CSS. The hl and svg nodes are centered by applying a
style rule on the parent body node. How concise curves can be expressed with

SVG can be noticed by inspecting the path element. The line is plotted using
a cubic Bézier curve by specifying merely four coordinates.

body {
display: flex;
<body> flex-flow: column;
<h1>A Simple Line Plot using HTML, SVG and CSS</hi1> align-items: center;
<svg viewbox="-110 -61 221 121"> font-family: Latin Modern Roman;
}
<line x1="0" y1="-60" x2="0" y2="60" />
<line x1="-110" y1="0" x2="110" y2="0" /> svg line {
stroke: black;
<polygon points="-1,-56 0,-61 1,-56" /> stroke-width: 0.5px;
<polygon points="106,-1 111,0 106,1" /> }
<path d="M-100 0 Q -50 100, 0 @ T 100 0" /> svg path {
</svg> stroke: #0065bd;
</body> stroke-width: 1px;

fill: transparent;

A Simple Line Plot using HTML, SVG and CSS

Figure 2.2: On the top left: HTML body for a document that contains a line plot.
On the top right: CSS rules for styling the document.
On the bottom: Rendered result of the HTML document with CSS rules applied.

Internally, the browser processes these nodes into a data structure, the
Document Object Model (DOM) [9]. The DOM is first constructed with nodes
statically present in the HTML document, but it is possible as well to create
and manipulate nodes via a programmable interface.

These document nodes, and specifically SVG elements for their elegant
properties of modeling geometric shapes, form the basis of the charts and
diagrams in our dashboards.

2.2.3 JavaScript

JavaScript, or by its formal name ECMAScript [10], can be considered the lingua
franca of the web. Up until very recently, it has been the only general purpose

programming language that could be executed in all major web browsers. The
scripting language was created to allow users to interact with elements on a
web page and to dynamically inject content.

Still today, JavaScript has an exclusive position in web browsers. Various
interfaces to communicate with the host system from within a web page can only
be accessed from JavaScript. While these interface are exposed to JavaScript,
the actual code communicating with the operating system is written in low-level
system languages. The list of application programmable interfaces (APIs) that
are used in our dashboards include:

Fetch APl When accessing a dashboard, the application provides all logic
necessarily to process and display data. This logic does not change while
the user interacts with the dashboard. However, data sources may change
frequently and are therefore loaded on-demand via the Hypertext Transfer
Protocol (HTTP) to provide up-to-date information. The Fetch API is
used to load data from the network into memory.

File APl Local files may also be analyzed with the dashboard tool. This is
useful both for large files that are stored locally so they do not need to be
transferred over the network or files that are not exposed to any network
service for compliance or privacy reasons. In that case, the File API is
used to load data directly from the local file system.

Document API Interface elements and graphics need to be rendered dynam-
ically depending on the dashboard configuration and input data. The
Document API is used to create and manipulate the DOM nodes as
described in Section 2.2.2.

Event Handler APl Exploring data goes beyond simply displaying diagrams
and charts. It should also be possible to interact with them, e.g. zoom in
on specific ranges, change input parameters and show detailed metrics
when hovering a diagram. To run actions on keyboard, mouse or touch
input, event handlers are attached to the DOM via the Event Handler
APL

WebAssembly APl Queries should be evaluated as fast as possible to make
interaction with data fluid. To minimize latencies, queries are executed
locally in the browser. WebAssembly makes it possible to compile a
database engine into machine code with only little overhead, achieving
performance comparable to running native binaries. The WebAssembly
API provides an interface to compile and instantiate such binary modules.
We provide a full example how to interact with this API in Section 2.2.4.

2.2.4 WebAssembly

In our dashboards, we want to emphasize on quick execution of database
queries with low latency. For that reason, we process queries in-memory, once
the data has been loaded from the network.

One way to accomplish this would be to write a query engine in JavaScript
or to compile an existing database to JavaScript. However, JavaScript is not
a good target for code that deals with large amounts of memory operations,
because it is a dynamic scripting language where access to memory is managed
by a runtime.

In JavaScript, memory is managed by garbage collection, which means that
memory allocated from objects is only periodically freed. This is especially
expensive for code that does a lot of allocations because available memory
would run out fast, and the garbage collector would need to be invoked often
to clean up no longer used memory for new allocations. Fine-grained access to
memory, which is the basis for many optimizations in analytical databases as
described in Section 2.3, would also not be possible because we do not have
control over memory layout and how it is accessed.

Additionally, numerical calculations that are used in arithmetic operations
or to compute memory addresses can be slow in JavaScript. This is because
JavaScript does not distinguish between integer and floating point numbers
where the latter generally require more CPU cycles when used in arithmetic
operations. To adhere to the language semantics, the JavaScript runtime is
forced to execute floating point operations even when the programmer knows
in advance that his algorithm only deals with integers.

When JavaScript still was the only language that could be run in web
browsers, software engineers from Mozilla researched how a subset of JavaScript
could be used to better emulate low-level code. They found that the language
specification allows coercing floating point numbers to integers via bitwise
operations. Specifically, x = x | 0; guarantees that x is an integer and
z = (x + y) | 0; adheres to integer arithmetic if both x and y are integers.
By the use of the typed arrays API, memory layout and access can be controlled
on a byte level. These two techniques guarantee that this subset of JavaScript
can be heavily optimized by mapping it closely to machine operations and has
been formally specified as asm.js [11].

The concept of asm.js then influenced the creation of a new programming
language with the goal to be portable, fast and safe: WebAssembly [12]. These
goals are accomplished in the following way:

Portable. To ensure code can be compiled for a large number of targets,
WebAssembly uses a virtual instruction set architecture. This instruction

Fast.

Safe.

set defines a number of low-level operations, which are not supposed to
run on hardware directly, but are designed to closely map to instructions
of most common hardware.

The instruction set architecture expresses computation by a stack machine:
Instructions operate on an implicit stack, where arguments can be placed
onto and consumed from when needed. This mechanism provides a
simple, well-defined calling convention that can be translated to the target
platform’s calling convention. Additionally, optimal register allocation
can be chosen by the compiler for each hardware architecture individually.

This instruction set design ensures that the semantics of the language
are well-defined while allowing each platform to take full advantage of
their hardware capabilities. Due to the low-level representation, many
high-level languages can use WebAssembly as a compilation target.

For our dashboard tools that means that we can run it on mobile and
desktop devices, and different CPU architectures like x86-64 and ARM.

As a portable intermediate language, WebAssembly aims to be fast in
multiple regards: Speed of runtime execution and speed of compilation.

Since the virtual instruction set was designed in a way that most op-
erations can be directly be mapped to hardware instructions, runtime
code achieves similar performance to high-level code that was directly
compiled to the target architecture.

WebAssembly refers to two things: A textual representation and a binary-
encoded format for modules, which can be converted from each other.
The textual format aims to make module contents readable for humans,
while the binary format is more compact and can be consumed faster by
machines.

When the binary format was specified, special emphasis was taken on that
it would be possible to compile WebAssembly to machine code in a single
compilation pass. In a browser context this means that functions can be
compiled incrementally while the module is streamed from the network,
allowing code to be run directly after it has finished downloading. This
greatly reduces the time to first interaction for users.

From a user’s point of view, a WebAssembly module loaded from the
internet contains untrusted code. Therefore, a security model needs to be
employed that limits possible adverse effects of running untrusted code.

To prevent memory of a process running a WebAssembly module to be
corrupted, a simple sandbox model is applied. By design, WebAssembly
modules can only operate on continuous chunks of memory so that bounds

checks can be performed by simply validating if the requested memory
address is within the range of memory assigned to the module.

Additionally, formal validation rules are checked while compiling that
guarantee that function calls can not leave the stack in a corrupted
state. The call stack and a table containing functions that can be called
dynamically are stored in memory inaccessible to WebAssembly, ensuring
that no maliciously injected code can be invoked. Dependencies to
functions that could communicate with the operating system need to be
explicitly declared, further limiting the attack surface.

These measures mitigate most common attacks that can be carried out
on corrupted memory, while still being able to distribute high-performing
low-level code to users.

To understand how the virtual instruction set of WebAssembly works in
practice, we define a set of functions in C and inspect the corresponding output
when compiled to WebAssembly.

The functions defined in Figure 2.3 carry out simple operations: add sums
up two integers, store saves an integer to a specified memory location and
has_ultimate_answer loads an integer from a specified memory location and
prints Yes! if that integer equals 42. A function to print a null-terminated
string is declared as extern and is expected to be externally linked to the
program.

For the corresponding WebAssembly module we can notice that on the top
level the module is organized in sections. The first section contains references
to external objects and functions that must be provided when the module is
instantiated. For one, a reference to a continuous piece of memory that our
module can operate on and a reference to the print function are expected.

Next, a data section provides static data to be copied into memory when
the module is instantiated. In our case, this section contains the string Yes!
that is used in the has_ultimate_answer function.

The rest of the module is occupied by function definitions that are subse-
quently exported, so that they can be called externally after being instantiated.
The function signatures contain information about parameters, local variables,
and return values, so that it can be statically validated that the implicit stack
is in a consistent state when the function body is entered and left. E.g. $add
expects at least two integers $a and $b on the stack before the function body
is entered and must leave one integer on the stack, which is the return value of
the function.

10

(module

extern void print(charx);

int add(int a, int b) {
return a + b;

void store(int* address, int value) {
*xaddress = value;

void has_ultimate_answer(int* address) {
if (xaddress = 42) {
print("Yes!");

)

;; Import linear memory
(import "env" "memory" (memory $env.memory 1))
;; Import function to print a null-terminated string
(import "env" "print" (func $print (param i32)))
;; Data segment starting at address '1024'
(data (i32.const 1024) "Yes!\00")
;; Function definitions
(func $add (param $a i32) (param $b i32) (result i32)
;; Push summands onto stack
local.get $a
local.get $b
;; Consume summands and push sum onto stack
132.add
)
(func $store (param $address i32) (param $value 132)
;; Push address and value onto stack
local.get $address
local.get $value
;; Consume arguments and write value to address
i32.store
)
(func $has_ultimate_answer (param $address i32)
block $if
;; Push address onto stack
local.get $address
;; Consume argument, load value at address and
;; bush value onto stack
i32.%load
;; Push constant '42' onto stack
i32.const 42
;; Consume two values and push '1' onto stack if
;; operands are not equal, '0' otherwise
i32.ne
;; Consume value and jump to end of 'if' block, if
;; value 1is non-zero
br_if $if
;; Push constant '1024' onto stack
i32.const 1024
;; Call print function
call $print
end
)
;; Export functions
(export "add" (func $add))
(export "store" (func $store))
(export "has_ultimate_answer" (func $has_ultimate_answer))

Figure 2.3: On the left: Exemplary C code with simple function definitions.
On the right: WebAssembly module with same semantics as the C code. The module
has been generated by a C compiler, converted to the WebAssembly Text Format and

annotated for clarity.

If we look at the instructions in the function body itself, we can see that
parameters and local variables can be accessed via local.get, which subse-
quently push the value onto the implicit stack. Other instructions can then

11

consume values from the stack to carry out operations, e.g. 132.add consuming
two integers and pushing the sum back, 132.store taking an address and a
value to write and i32.ne consuming two values and pushing back 1 if the
values are not equal or 0 otherwise.

Control flow can be expressed by block and loop labels in WebAssembly.
These can also be nested and conditionally exited or repeated. E.g. in our
$has_ultimate_answer function we want to exit the $if block, if the value
does not equal 42. This can be accomplished by the br_if instruction which
jumps to the end of a block if the consumed value is non-zero.

To demonstrate the interaction between WebAssembly and a host language,
we use JavaScript in Figure 2.4 to instantiate a WebAssembly module.

const memory = new .Memory({
initial: 1,

IDH

const print = (address) = {
const end = Math.max(address, new Uint8Array(memory.buffer).index0f(@, address));
console.log(new TextDecoder().decode(memory.buffer.slice(address, end)));

iE

const { instance } = await WebAssembly.instantiateStreaming(fetch(), {
env: { memory, print },

i

const { add, store, has_ultimate_answer } = instance.exports;

const result = add(41, 1);

const address = 0x1234;
store(address, result);

has_ultimate_answer(address);

Figure 2.4: Example how to interact with the WebAssembly module in Figure 2.3 from JavaScript.

First, a continuous piece of memory is allocated that can be accessed both
from JavaScript and a WebAssembly module. Such shared memory is essential
in our dashboard tool to exchange more complex data structures between the
query engine in C++ and the JavaScript-based visualization. We can e.g.
serialize a query string into this memory so that it can be accessed by the query
engine, which then computes result rows, serializes them using a commonly

12

understood format, and returns the memory address back to JavaScript.

Thereafter, we define a print function that can display a string to the console.
At the same time, this serves as an example how a more complex data structure,
in this case a null-terminated UTF-8-encoded string, can be deserialized from
a memory buffer in JavaScript.

In the next step, we use the WebAssembly.instantiateStreaming API to
load the module from network, validate and compile it in a single pass and
instantiate the module. That way, we do not have to save an intermediate
buffer and can directly interact with the module once the download has finished.
In this API function call, references to memory and print are provided in an
import object to the module.

Once the module has been instantiated, we can use exported functions from
WebAssembly as if they were regular JavaScript functions. That way, we can
combine access to privileged system API from JavaScript with the predictable
performance of WebAssembly.

Understanding WebAssembly at the lowest level is beneficial to know where
the performance improvements compared to JavaScript come from. However,
for our dashboard tool we do not directly write source code at this low level but
use compilers to generate WebAssembly modules and JavaScript modules for
serialization and deserialization of data structures. More detailed information
about these compilers can be found in Chapter 4.

2.3 Databases for Analytical Query Workloads

Applications whose primary purpose is analyzing and visualizing data have
different requirements for their database engine than a system for handling
live customer orders would have. The database workloads for the former
are commonly classified as Online Analytical Processing (OLAP) and Online
Transaction Processing (OLTP) for the latter. [13]

OLAP database queries are predominantly concerned with reading and
associating large amounts of entries and aggregating them. In contrast, OLTP
queries need to often lookup and insert data, both at arbitrary locations. In
regard to database implementation, these requirements are conflicting in many
cases and cannot be optimized both at the same time without making any
compromises.

Since we mainly focus on dashboards, we have a database workload that
heavily reads from multiple data sources and executes computationally expen-
sive queries to aggregate the results. In the following sections, we examine

13

which technological choices are taken in database design to optimize OLAP
workloads.

2.3.1 In-Memory Databases

Optimizing a system means speeding up work or even avoiding it altogether if it
can be omitted under certain conditions. As a first step, potential bottlenecks
need to be identified by observing where most of the time is spent during
execution. This information can then be used to find parts in the system,
where optimizations would have the most impact and should be addressed first.

In the case of classical disk-based database systems, profiling query execution
reveals that interaction with memory (I/O operations) can take up a significant
share of execution time, especially for read-heavy workloads. Traditionally,
databases stored all data on external storage (such as spinning hard drives and
later solid-state drives) and used main memory only for the working memory
required during query execution.

Considering the memory hierarchy in a classical computer architecture
in Figure 2.5, one can notice that access latency increases exponentially, the
further away from the CPU the data resides. Specifically, the difference between
fetching uncached data from main memory and external storage amounts to
roughly five orders of magnitude. This illustrates well why keeping data
exclusively in main memory can lead to significant performance improvements.

Capacity Access latency /\
s N
| KiB-MiB <10ns / CPU cache \
‘ GiB <100ns // Main memory \\
‘ TiB ~ms // External storage \\
‘ TiB-PiB ~sec-min /I Archive storage \\

Figure 2.5: Memory hierarchy in a classical computer architecture.

Eliminating access to external storage from a database system is not only
attractive for performance reasons. Buffer management, which means loading
data segments from external storage into working memory and writing data
back at a suitable time, requires careful implementation regarding correctness
and efficiency. Removing this complexity can therefore reduce the effort to
maintain the system implementation.

Historic reasons for using external storage in databases were mostly econom-

14

ical: main memory modules with enough capacity to entirely fit a typical data
warehouse did simply not exist or were prohibitively expensive compared to
external storage media. Only in the last one or two decades has it become
feasible to realize a database system that would rely solely on main memory,
as advancements in the manufacturing process of memory modules increased
transistor density, making them both cheaper and larger in capacity.

The feasibility to design purely in-memory database systems heavily influ-
enced the database landscape in the last decade. New commercial systems
emerged, such as Hekaton [14] by Microsoft and SAP HANA [15], as well as
research databases, such as HyPer [16] at TUM and MonetDB [17] at CWL.

The latest research database of CWI, DuckDB [18], also uses an in-memory
design. Since it has been built specifically as an embeddable analytical database
and matches well with our criteria, we use DuckDB as our primary query
engine. The database is embedded into our C++ runtime for the dashboards
and operates on a continuous piece of memory in WebAssembly.

2.3.2 Columnar Data Storage

To understand how the memory representation of data stored in a database can
affect query performance, one needs to consider how the underlying hardware
is utilized during query execution.

When data is fetched in an operating system on modern CPU architecture,
various caches exist between the levels of the memory hierarchy. These caches
exist to hide the high latencies of data fetching compared to available arithmetic
processing resources. Starting from external storage, the operating system
keeps a cache in main memory for data blocks of recently accessed files. Next,
when data is loaded from main memory into CPU registers, the CPU loads
adjacent memory regions into multiple levels of caches implemented in hardware.
Namely, these are the L1-L3 caches, where L1 is the cache with lowest latency
and smallest in capacity, and L3 the comparatively largest cache with highest
latency.

Specifically for in-memory data processing we can exploit the fact that the
CPU loads adjacent memory addresses, so called cache lines, ahead of time. If
we maximize the density of relevant data that is loaded into the cache lines, we
need to fetch data from lower levels in the memory hierarchy less often. That
means that we are more rarely penalized with high latency costs and therefore
need less time overall to load all required data.

To demonstrate how storing database entries column-wise instead of row-wise
can utilize cache lines more efficiently, we first create a table that contains
cities by the SQL schema specified in Figure 2.6. For simplicity, we assume

15

—

that each attribute takes up the same amount of space in memory, that we have
one cache level, and that a single cache line can hold exactly four attributes.

Next, we execute the SQL query in Figure 2.7 that reads the population
attribute of each row in the city table and returns the sum of all population
values. Effectively that means that the database engine is forced to consider

every single row in the table, since each row could affect the result.

CREATE TABLE city (
name VARCHAR(26),
population INT,

area FLOAT,

subdivision_code CHAR(2)

)

Figure 2.6: Exemplary city SQL schema.

Row store

Berlin

3,669,491

891.68

BE

Hamburg

1,847,253

755.22

HH

Miinchen

1,484,226

310.70

BY

Koln

1,087,863

405.02

NW

Frankfurt

763,380

248.31

HE

Stuttgart

635,911

207.35

BW

Diisseldorf

621,877

217.41

NW

Leipzig

593,145

297.80

SN

— Increasing memory addresses

—

SELECT SUM(population) FROM city;

Figure 2.7: Exemplary aggregating SQL query.

Column store

%

Berlin Hamburg | Miinchen |Kéln Frankfurt | Stuttgart | Disseldorf | Leipzig
3,669,491 1,847,253 1,484,226 1,087,863 | 763,380 (635,911 |621,877 |593,145
891.68 755.22 310.70 405.02 24831 |207.35 |[217.41 297.80
BE HH BY NW HE BW NW SN
[OFirst cache line []Scheduled [JUnread [JRead [JRead, but discarded

Figure 2.8: Simplified memory layout and memory accesses during query execution for row- and

column-oriented databases.

shown in Figure 2.6 and execute the query stated in Figure 2.7.

Both databases contain the same entries for the schema

In Figure 2.8, memory layout and memory accesses during query execution
are shown for two different database systems. The one on the left stores a
complete record for each row subsequently in memory, while the right one
stores all attributes of one column subsequently before storing the next column.

For the column store, we can observe that after fetching the first attribute,
all other attributes in our cache line are also relevant to our query result and
will eventually be loaded into the arithmetic unit of the CPU to form the total
sum. As a result, for each value we need to fetch from main memory, we can
load the three subsequent values with a vastly lower latency from the CPU
cache. As we can recall the memory hierarchy in Figure 2.5, these subsequent
loads are roughly ten times faster.

16

The row store however does not make good use of the cache line. In fact, it
is only able to utilize one single attribute within the cache line for the query
result. Therefore, in this example, we do not benefit at all from the cache the
CPU provides and each attribute needs to be loaded from main memory at
full cost.

Due to good utilization of cache lines, column-oriented databases perform
especially well when a lot of subsequent values are read, e.g. when filtering or
aggregating a whole column. This is a common use case in data analytics and
in queries that an interactive dashboard produces. DuckDB uses a column-
oriented data store which made it a favorable candidate in our choice over
other embeddable in-memory databases such as SQLite [19].

2.3.3 Vectorized Query Execution

When a database accepts a SQL query, the query is first transformed into a
relational algebra tree internally. Relational algebra is a construct that allows to
reason about database queries in set theory. Reasoning on a set-theoretical level
about queries allows us to perform logical optimizations without changing the
result set. This is very useful because we can apply these logical optimizations
to transform a relational algebra tree into a simpler but semantically equivalent
tree that can be executed more efficiently.

After the database has produced an optimized relational algebra tree, the
tree needs to be transformed into something that can be executed by a machine.
Several strategies exist, but we will focus on operator-centric execution only.
Operator-centric means that the relational algebra tree does not only exist
conceptually, but is also instantiated physically in code and is traversed during
query execution to produce the result set.

To explain this method of computation, we guide through an example. For
that, we reuse the city schema from Figure 2.6 and extend it by a subdivision
table in Figure 2.9. Next, we want to fetch a list from the database that
contains all cities that have a population of at least 10,000. Additionally to
the names of the cities, we want the name of the subdivision they are located
in to be displayed. The SQL query that formulates this request can be found
in Figure 2.10.

After parsing the query and transforming it into a relational algebra tree, the
database optimizes the tree into one that most likely looks like in Figure 2.11
on the left. Concretely, the selection is pushed down, so that filtering out all
cities that do not have at least 10,000 inhabitants happens before we try to
match them with the subdivisions. Also, the sides of the join are swapped,
because the database estimates that the number of subdivisions is smaller than
the number of cities that match our criterion. That way, the data structure

17

utilized to find matches is filled with less entries and therefore consumes less
memory.

SELECT city.name, subdivision.name
FROM city

JOIN subdivision

ON subdivision_code = code

WHERE population > 10000;

CREATE TABLE subdivision (
code CHAR(2),
name VARCHAR(22)

);

Figure 2.9: Exemplary subdivision SQL schema.
Figure 2.10: Exemplary join SQL query.

chunk < child.get chunk()
return chunk.map(projection)

while !hashtable.finalized ()
chunk «+
if chunk.is empty/()
hashtable.finalize()

I break
city.name,subdivision.name hashtable.insert(chunk)
while true
‘ chunk <
if chunk.is_empty()
Mcode = subdivision_ code return []
next < hashtable.probe(chunk)
/ \ if Inext.is__empty/()
return next
subdivision Opopulation > 10000 / \
if ltable.has next() while true
return [] chunk < child.get chunk()
return table.make_ chunk() if chunk.is empty()

city return []
next « chunk.filter(predicate)
if Inext.is_empty/()

return next

if ltable.has_next()
return []
return table.make chunk()

Figure 2.11: On the left: Optimized relational algebra tree for query shown in Figure 2.10.
On the right: Pseudocode for vectorized query execution. The colored boxes highlight
where the implementation corresponding to the relational algebra operator can be found.
Colored text indicates which child operator is called.

The most straightforward implementation for traversing the relational algebra
tree would start at the root of the tree and repeatedly request the next result
tuple from the operator until no more tuples can be produced. Each operator
would then recursively request tuples from its children, perform the computation
corresponding to the semantics of the operator, and pass the result to the
parent. At the leaf nodes of the tree, the actual tables are scanned for entries.

18

While this model is conceptually very elegant and easy to implement, the
convenience comes at great cost. For each tuple that can be contained in the
result, we potentially need to call every single operator in the algebra tree
once. If we construct queries that return a large amount of rows, the number
of function calls alone perceptibly affects performance. Additionally, these
frequent context switches between operators lead to very inefficient utilization
of cache lines, because we pollute the cache with memory accesses from other
operators before we get to load the next entry from memory.

To correct the shortcomings of this technique, while keeping the fundamental
idea, we seek to amortize the function calls into other operators by requesting
and returning tuples in bulk. This method is also referred to as vectorized
execution. In Figure 2.11 on the right we give an outline how an implementation
of the relational operators present in our example might look like. We can
observe that scanning the relation, filtering, and inserting and probing the
hash table all happen in bulk. That way, the amount of function calls is greatly
reduced and we can benefit from low latencies when accessing cached values
during bulk operations on successive regions of memory.

The vectorized execution model was pioneered and popularized by the
MonetDB/X100 [20] project. Due to excellent properties of vectorized execution
for analytical queries, this design has also been incorporated into DuckDB. In
summary, our requirements to an analytical database overlap very well with
the project goals of DuckDB and make it an ideal candidate for our query
engine.

19

3 Related Work

Using web browsers as a platform to analyze data is not a novel idea since
the ease of distribution makes it a very attractive target.

When asm.js, a performance-centric subset of JavaScript, and Emscripten [21],
a LLVM-to-JavaScript compiler, were released, researchers thought of which
use cases would be interesting to showcase this new technology. Among the
first demos was SQLite, an embeddable database written in C, running in the
browser [22]. In a similar spirit, a prototype for a query engine was written
that would compile SQL queries to asm.js and execute them in-browser. [23]
However, these demos were more focused on the technical aspect of running
SQL in a browser instead of being part of a larger data analytics tool.

Using HTML, CSS and SVG for data visualization has also been well explored.
D3 [24] is a tool that can be used to create very sophisticated visualizations
through a custom JavaScript API. The API provides imperative operations
to create visualizations, can be used to animate transitions and makes user
interaction possible by running actions when an event is triggered. This
imperative model is very powerful, but pushes a lot of responsibility to the
user to synchronize state and to determine when updates need to be executed.

Vega-Lite [25] is a similar tool to D3, but offers a high-level grammar to
express layout, data transformations and interactions. Using a declarative
grammar allows Vega-Lite to analyze data flow and visualization in the same
context, so that actions that need to be run on user interaction can be inferred
by the compiler. That way, a small set of granular updates can be applied
automatically to visualizations.

While the grammar of Vega-Lite for visualizations and interactions comes
close to the expressiveness we imagine for our dashboard tool, it is still very
programmer-centric. It accepts specifications in a JSON-format and is initial-
ized via JavaScript.

The goal for our data analytics tool lies more in the intersection of SQL,
Vega-Lite and Emscripten. The language to create dashboards should be closer
to what is used in the data science domain, as expressive as Vega-Lite and
benefit from low-level optimizations by Emscripten and WebAssembly.

20

4 Compiler Toolchain and
Development Tools

In this chapter we want to give some background about the tools that
we use to build the interactive dashboard system as described in Chapter 5.
Particularly, we want to go into detail in Section 4.3 how a parser for a
programming language as described in Section 5.2 is constructed.

4.1 C++/Emscripten

To make parsing of input programs and query processing fast and responsive,
we want our code to run in WebAssembly. Instead of writing this low-level
code directly, we use a programming language that provides high-level features
like classes and a collection of commonly used data structures.

We choose C++ for this task because it allows precise memory management
and has a vast ecosystem of tooling and libraries that are suitable for database
development. Among those, we use a parser generator for C++ (we go into
more detail about this in Section 4.3) and embed the DuckDB query engine
into our project.

Emscripten is a tool that can compile a C+-+ project to WebAssembly and
additionally generates glue code that is needed to interface between JavaScript
and WebAssembly. It uses a C++ compiler to generate LLVM [26], a low-level
intermediate representation of code. The LLVM code is then translated to
WebAssembly and a small JavaScript runtime.

Since WebAssembly has no direct access to platform APIs, Emscripten
provides an implementation for system calls in JavaScript that are imported
in WebAssembly. It does for example implement an in-memory file system
in JavaScript to support system calls like open, read and write, and uses
the JavaScript WebWorker and SharedArrayBuffer APIs to emulate multi-
threading via POSIX threads.

Using Emscripten allows us to treat the dashboard tool mostly like a regular
C++ project that can be run on native architectures, while also being able to
target web browsers.

21

4.2 Protocol Buffers

In Section 2.2.4 we noticed that the only way to exchange data between
WebAssembly and JavaScript are function calls or accessing a shared piece
of memory. Function arguments and return values in WebAssembly can
only contain primitive values, precisely integers and floating point numbers.
To exchange more complex data structures, we need to read and write into
shared memory and agree on a format for serialization, because e.g. objects in
JavaScript and C++ do not share the same memory layout.

One way of specifying a serialization format are Protocol Buffers [27] by
Google. Protocol Buffers are a binary message format which aims to be compact
and to serialize and deserialize efficiently.

The Protocol Buffers specification language allows defining message types
which are used to write key-value pairs into memory that can be reconstructed
back to a message structure. From this specification, code can be generated
for various programming languages that provide methods to pack and unpack
data from a buffer. Serialization and deserialization code is not particularly
complex, but still requires implementation effort. Auto-generating this code
therefore also removes a potential source of programmer errors.

Another benefit of specifying a serialization format is that we can develop
components of a system against a contract instead of relying on implementation
details. Since the exact structure of return values is known, it would be possible
to swap out the query engine for a more efficient one in the future, as long as
it uses the same format to encode query results.

A basic example for a message specification using Protocol Buffers can be
seen in Figure 4.1. The specification is a stub for how a query result might be
encoded. A message contains fields which can either use one of the pre-defined
scalar types or compose custom message types. The scalar types can be used
to encode numeric and boolean values, strings, and raw bytes.

message QueryResult {
repeated string column_names = 1;
uint32 row count = 2;

}

Figure 4.1: Exemplary Protocol Buffers message specification.

Field values are optional by default, with the idea that clients accepting the
message format are more resilient if they are always forced to consider the
case that values could be missing. Additionally, field types can be marked

22

repeated, meaning that an array of values for the same field can be provided.

The binary message format merely uses integers to identify fields. Therefore
the specification needs to be known by both the encoding and decoding side to
interpret a message correctly. In our example, column_names is tagged with
key 1 and row_count with key 2.

Tags in the binary message format additionally encode a wire type alongside
the key. The wire type is stored in the three least significant bits of the field
tag and is used by a decoder to determine how many more bytes belong to
the field that is being read. There are three classes of wire types: fixed-width
types, where a known number of bytes will follow, the length-delimited type,
where an integer containing the byte size of the field precedes the field’s data,
and the variable integer type, where an integer can be encoded by a variable
amount of bytes and each byte indicates with the most significant bit if more
bytes are following.

auto query_result = QueryResult();

auto& column_names = *query_result

const message = QueryResult

.mutable_column_names() .deserializeBinary(buffer)

’

for (auto& name : std::vector({
"name", "population"

A
column_names.Add(std:: string(name));

}

query_result.set_row_count(42);

query_result.SerializeToString(&buffer);

Figure 4.2: Serializing example data using auto-

generated C'++ library according to
message specification in Figure 4.1.

1

0b00001 0b00001

const queryResult = message.toObject();

queryResult.columnNamesList;

queryResult.rowCount;

Figure 4.3: Deserializing example data using auto-
generated JavaScript library according
to message specification in Figure 4.1.

2
0b00010

buffer: 0x|0a 6e 61 6d 65 0a

70 6f 70 75 6¢c 61 74 69 6f 6e 10 2a

"name"

"population” 42

Figure 4.4: Example data in binary format according to message specification from Figure 4.1.
Buffer contains message that has been written in Figure 4.2 and is read in Figure 4.3.

In Figure 4.2 and Figure 4.3 an example is given for how the serializa-
tion/deserialization libraries are used, that are automatically generated from

the message specification in Figure 4.1 by the Protocol Buffers compiler. In
particular, a query result message with the table names name and population
and a row count of 42 should be serialized in C++, written to a buffer, and
subsequently read and deserialized in JavaScript.

The binary representation of that message can be seen in Figure 4.4. We
can notice that the first two values are length-delimited and belong to the
column_names field, indicated by the key 1 encoded in the five most significant
bits of the tag. After a value indicating the byte-length of the following data,
a UTF-8 representation of the string is stored. The row count is stored in a
single byte and associated by the key 2 and a variable integer wire type.

The actual message types in our dashboard tool are more complex than in
this example but work according to the same principle. Specifically, we define
a message to transfer a parser tree of the input program and a message to
transfers query results from the database, where both specifications contain
multiple nested message types.

4.3 Flex and Bison

For our data analytics tool, we want to model a custom programming lan-
guage that has familiarities with SQL and can be used to declaratively build
dashboards.

In programming languages, the first step of accepting and executing a
program usually consists of transforming the input text into a structured
representation, a so called parse tree. In most implementations, this process is
separated into two phases: Lexical analysis, where the input text is divided and
categorized into a sequence of tokens and parsing, where tokens are matched
against a set of grammar rules to derive a parse tree.

Flex [28] and Bison [29] are tools to generate programs that perform lexical
analysis and parsing, respectively. They were implemented as open source
alternatives to Lex and Yacc and are compatible with the programming interface
specified in their POSIX manuals [30][31].

Lexical analyzers (also referred to as lezers) generated by Flex use determin-
istic finite automata to produce a token stream and therefore are limited to
accepting a regular language. In particular this means that for example nested
quoted expressions can not be identified in this stage. To specify which set of
tokens should be recognized, a collection of keywords and regular expressions
can be provided to Flex. These tokens are the smallest units used in the more
powerful parser rules.

24

{ return make_SELECT(); }

{ return make_STAR(); }

{ return make_COMMA(); }

{ return make_FROM(); }

{ return make_SEMICOLON(); }
{

[a-z][a-z0-9_]* { return make_IDENTIFIER(getTokenText()); }

Figure 4.5: Exemplary lexer definition in Flex with regular expressions and C++.

Figure 4.5 shows an example how to instruct flex which kind of tokens should
be produced by the lexer. We specify the keywords SELECT and FROM, the
symbols *, , and ; and a regular expression for identifiers that may start with
a letter and contain letters or digits. Those tokens form the basis to parse a
very small subset of SQL in our next example regarding parsers.

In its default configuration, Bison generates deterministic pushdown au-
tomatons to parse grammars, which use the LR(1) parsing technique. In this
definition, L stands for left-to-right, which means that the parser starts at the
leftmost token and successively consumes tokens to the right to find a matching
rule, also called derivation. R refers to rightmost derivation, which means that
the parser tries to find the most specific rules first, before constructing more
general derivations. This behavior is also known as bottom-up parsing because
the resulting parse tree is constructed from the leaf nodes up. Lastly, I stands
for a lookahead of one, meaning that the parser considers one token further
out to determine which rule to use next.

The parsing mechanism is implemented using shift and reduce operations,
where shifting means placing the next token on the stack of the automaton
and reducing describes the action of replacing a sequence of matching tokens
on the stack to form a derivation. Due to the use of deterministic pushdown
automatons, the languages accepted by these parsers are equivalent to the class
of deterministic context-free languages.

To define which language the parser should accept, a grammar in Backus-
Naur form (BNF) needs to be provided to Bison. Grammars in BNF consist
of a collection of rules (also called productions), where on the left-hand side
exactly one nonterminal describes a sequence of nonterminals or terminals on
the right-hand side, or a list of alternatives thereof. A terminal is a symbol
that may not be further resolved by any rule, and a nonterminal therefore one
where further rules may be applied.

In Figure 4.6, we can see a set of productions that define a simplified select
statement. To clarify the terminology, e.g. the columns nonterminal describes
two alternatives: Either it ends in with the terminal symbol * or can be
replaced by the column_list nonterminal.

On the right-hand side of the productions, Bison provides the ability to

25

execute C++ code when a rule is matched. This construct is used to build up
internal parse tree structures from the bottom up, which can then be further
processed. E.g. the parsed structure could be used directly by a program
interpreter or it could be compiler into program code that is executed at a
later point.

select_statement:

"SELECT" columns "FROM" IDENTIFIER ";" { $$ = SelectStatement($2, $4); }
'
columns:
xt { $$ = SelectStatement::Star; }
| column_list {$$ = $1; }

column_list:
IDENTIFIER = vector($1); }
| column_list "," IDENTIFIER { $1.push_back($3); $$ = $1; }

—~—

R

-
I

Figure 4.6: Exemplary parser definition in Bison with BNF rules and C++.

A concrete example of which rules are matched on an input text can be seen
in Figure 4.7. In this example, the input text has already been processed by the
lexer and is provided as a list of tokens to the parser. The rules are matched
from left to right, bottom up. Therefore, subtrees with the root column_list,
column_list, columns, and select_statement are built in that order. If the
parser has been able to construct a complete parse tree when no more tokens
are outstanding to be processed, the input program is accepted as valid.

select statement

columns
cqumn _list
column _list

SELECT IDENTIFIER COMMA IDENTIFIER FROM IDENTIFIER SEMICOLON
\—T

‘SELECT‘ ‘name‘ D ‘populatlon‘ ‘FROM‘ ‘c1ty‘ D

Figure 4.7: Upper part: Derivation of a select statement by the grammar rules defined in Figure 4.6.
Lower part: Exemplary input text and resulting token list according to rules in Figure 4.5.

In addition to BNF, the extended notation FBNF has been established.

26

It extends BNF in a way that productions may specify loops and optional
elements on the right-hand side. In BNF, these constructs can otherwise only
be modeled unwieldy by using multiple indirections. Nevertheless, both forms
are equivalently expressive and can be converted into each other.

columns

(%)
N

IDENTIFIER
()

N

select_statement

Figure 4.8: Grammar in EBNF which accepts the same language as the one in Figure 4.6, visualized
as railroad diagram.

Since grammars in EBNF can be converted into railroad diagrams, which can
be interpreted quite intuitively, we use these types of diagrams in Section 5.2
instead of BNF to express the same grammar.

An example of the visual representation of EBNF as a railroad diagram is
shown in Figure 4.8, which has been constructed on the basis of the grammar
in Figure 4.6. Italic titles indicate the definition of a nonterminal, round boxes
contain terminals where the token inside is read verbatim, and squared boxes
contain further nonterminals or terminal tokens that are resolved by a regular
expression.

27

5 Interactive Dashboards

Data sets can be explored by observing how the output changes depending
on which queries are formulated or how input parameters are chosen. Graphical
user interfaces are a great way to make the process of understanding data more
intuitive because users can visually interact with regions that are interesting
to them. Our goal is to create an analytical tool that can be used by graphical
interaction and is distributed via the web so that it is accessible to a large user
base.

In this chapter, we present how we built such a data analytics tool that makes
both creating and using dashboards interactive. We first give an overview of
the system architecture, then how the dashboard programming language is
designed, and lastly which features it offers.

5.1 Architectural Overview

The data analytics tool is divided into multiple subsystems that have clearly
defined responsibilities. This makes the overall implementation simpler, because
complexity is isolated in smaller modules.

EDITOR

PARSER Text Editor

Graphical Editor VISUALIZER

Dashboard Layout

COORDINATOR / Graphs & Diagrams

Scheduler

REMOTE
Data Converter | A — .

I ; DATA LOADER

! h g ¢ 5 i Network |

Data Storage i Data Connector i e ’
INTERPRETER

Query Engine | i i Data Extractor | P LoeaL i
; Runtime i i . !
x i File System
H i y
Executor S ———
WebAssembly ’
JavaScript Browser-External

Figure 5.1: Architectural overview of the data analytics tool. The dashed boxes indicate subsystems.
Subsystems are connected by a line when they directly interact with each other. The blue
area contains submodules that run in WebAssembly and are optimized for performance.

Subsystems communicate via interfaces so that they are coupled to a defined
set of functionality instead of relying on implementation details. That way,

28

parts of the system can be refactored and improved without needing to change
all components that dependent on it.

Figure 5.1 shows which modules are part of the system. The shaded gray area
indicates where memory and program execution is controlled by the browser.
Since APIs to communicate with the host system can only be accessed from
JavaScript (see Section 2.2.3), submodules that are mainly concerned with
user input, graphical output, and loading data from external sources are
implemented in JavaScript.

Modules that are self-contained in a sense that they only operate on data
input and return a structured result, can be fully implemented as WebAssembly
modules. These are located in the blue area and benefit heavily from fast code
execution. The reason why only a relatively limited amount of the system runs
in WebAssembly is discussed among the limitations in Section 6.3 and inspires
future work in Chapter 7.

The subsystems in Figure 5.1 are responsible for the following functionality:

Editor. The editor is the main entry point for user interaction when creating
a dashboard. It offers two input modes that operate on the same data
structure: A program can be written in a code editor, or can be manipu-
lated via a graphical representation of the program structure. The editor
is responsible for capturing text input by keyboard and mouse/touch
input by the JavaScript Event Handler API.

Visualizer. Users who explore a dashboard mainly interact with the visualizer.
It has two responsibilities: It creates widgets and configures the dash-
board layout using the JavaScript DOM API and CSS, and draws charts
and diagrams into these widgets using SVG when query results arrive.
The JavaScript Event Handler APT is used to notify the system when
interaction with elements requires evaluating new queries.

Coordinator. The coordinator is a central module that instantiates all other
modules and orchestrates program flow. Each subsystem has a different
interface for how its functionality is invoked and which data format is
expected. The coordinator allows modules to communicate by converting
data to a suitable format. Most of the data conversion is implemented
using Protocol Buffers, as demonstrated in Section 4.2.

Data Loader. A dashboard program can choose to load data from various
sources. The data loader is concerned with the specific protocols that
need to be implemented for each external source. It uses the JavaScript
File and Fetch APIs to load data from the local file system or the network.

Database. To evaluate analytical queries, the database is an integral part of
our system. It is optimized to quickly process large amount of data and

29

runs in WebAssembly, powered by DuckDB and Emscripten, as described
in Section 4.1. Data that is gathered from various sources is be imported
and stored in a relational format. The specifics of how the query engine
achieves high performance is described out in Section 2.3.

Parser. Dashboard programs are encoded in plain text and need to be converted
into a structured representation before they can be executed. The
parser is responsible this transformation. It runs in WebAssembly and is
implemented using Flex and Bison, as described in Section 4.3.

Interpreter. Interpreting a program conceptually means stepping through a
program’s instructions one by one and executing them. The interpreter
uses the program representation produced by the parser and maps it to
actions to be run by other modules. E.g., it notifies the database when to
execute a query and instructs the visualizer when to draw query results.
It also stores and resolves variables during program execution.

5.2 Dashboard Programming Language

For dashboard creators, the dashboard programming language will be the main
interface to configure how a dashboard should behave when it is loaded by a
user. In this section, we describe the concept, features and implementation of
the language.

5.2.1 Language Concept and Goals

Common workflows in data analytics follow a so-called ETL process, which
stands for Eztract, Transform, Load. We want to adopt this process, but extend
it by one step: Visualize. That way, data analytics and visualization are unified
into one seamless process.

The dashboard programming language has the goal to express the ETLV
process as elegantly as possible. It should provide constructs to extract data
from various sources, transform it by a suitable schema, load it to a database
and query it, and finally specify how results should be visualized.

The following goals should be satisfied by the language implementation:

Approachable. Anyone who wants to create a dashboard, should be able to do
so with reasonable effort. At the same time, we do not want to neglect
power users who are experts of their tools. For this reason we offer a
hybrid mode for modification: Dashboard programs can be created and
edited in a graphical and textual mode at the same time.

30

Interactive. Forgetting syntax or producing erroneous programs is a regular
part of the development cycle. The process of creating and editing
programs should be interactive in a way that the user interface provides
building blocks, contextually suggests which options are available and
reports errors at the location they happened.

Textual. Storing and versioning programs should be straightforward. The “sin-
gle source of truth” of dashboard programs is therefore human-readable,
concise text. This also ensures that programs are maintainable by other
developers in the future. Having an explicit, well formed representation
for a program is beneficial when considering that programs are read more
often than they are written.

Declarative. Dashboard programs should state which results they want to
obtain, instead of formulating instructions how to compute them. This
allows for automatic optimizations of programs and takes the burden off
users that worry about performance instead of focusing on the analytical
problem.

Familiar. The programming language should be self-explanatory enough that
it is possible to deduce without prior knowledge what a program does.
It should be possible to guess how a programs generally needs to be
structured by inspecting programs written by other people. That is why
we model the language closely to SQL which is commonly used in the
data analytics domain.

5.2.2 Grammar and Language Features

The dashboard programming language is modeled as a superset of SQL. That
means that every SQL program is a valid dashboard program, but would
not yet be useful on its own. Additional statements are needed to produce a
complete dashboard that loads and visualizes data.

These additional statements are designed to be familiar with SQL and are
formulated as english imperatives. E.g. in SQL a statement to query a table
starts with the imperative SELECT, and we use the additional imperatives
DECLARE, LOAD, EXTRACT, QUERY and VISUALIZE in our language to begin a
statement.

In the following subsections, railroad diagrams are used to express the
grammar rules of the language. These railroad diagrams were derived from
rules in BNF, that we use to generate a parser automatically. The relation
between these diagrams and how the parser is implemented is explained in
Section 4.3.

31

5.2.2.1 Program

At the top level, a dashboard program is expressed by a sequence of statements
that are finished by a semicolon.

For a statement, a number of alternatives are available. Usually, a program
declares statements in the following order: input parameters, statements to
load data, statements to extract data by a schema, statements to query data
and finally statements to visualize data. However, since our programming
language is declarative, control flow can be inferred without requiring that
statements must be provided in this strict order.

statement

program f‘ parameter declaration }7—
\{ load statement ’4
\{ extract statement ’—)
\{ query statement }—J
\{ visualize statement }—/

Figure 5.2: Program grammar.

statement

The program production in Figure 5.2 also allows for errors to appear
between semicolons. These are not formally specified, but rather indicate that
the parser may ignore invalid input until the next semicolon and resume with
parsing afterwards. This is useful in many cases where partially executing a
program still produces reasonable output, instead of rejecting it altogether.
The user is notified of the error, regardless.

5.2.2.2 Parameter Declaration

To actively encourage dashboard users to explore data by changing input
parameters, parameter declarations can be used.

A parameter must be named by an identifier, which is defined as ei-
ther an identifier literal, string literal or keyword. An identifier
literal is a token that may start with a character and subsequently contain
characters, numbers and underscores, e.g parameter_1. A string literal
is text that is quoted in single or double quotation marks. The keyword rule
simply resolves to all possible keywords in the grammar, so that the parser can
correctly choose as an identifier in this position, even though the token was
classified as keyword by the lexer.

32

Optionally, a second identifier can be specified preceded by an AS token.
In that case, the first identifier will be used as a label on the dashboard and
the second one will act as an alias that can be referenced in source code.

parameter declaration

—@ECLARE}—@’ARAMETE@—J identifier % @ parameter type ’—
®

parameter type

identifier INTEGER
identifier literal FLOAT
string literal TEXT
. DATETIME
variable
®
FILE

Figure 5.3: Parameter declaration grammar.

A parameter can then substitute all matching variables in the source code at
runtime, where a variable is a $ followed by an identifier. Variable substitution
happens either by simple string replacement, or more complex operations like
file loading, depending on the type of the parameter. Possible parameter
types are listed in Figure 5.3.

For each declared parameter, a graphical input element is rendered on the
top of the dashboard that can be manipulated by the user.

5.2.2.3 Load Statement

Before data can be analyzed and explored, a data set must be imported. Using
load statements, data can be fetched from a number of sources. Currently, the
dashboard tools allows to use a text loader, file loader or http loader,
as reflected by the load method in Figure 5.4.

A text loader represents static data that is embedded as string literal into
the program text.

33

When the file loader is used, data will be read from the local file system.
A file must be selected by the user through a parameter field of type FILE, and

the corresponding parameter identifier must be provided as a variable to the
file loader.

load statement

LOAD identifier FROM load method

load method text loader

file loader

file loader
http loader —(FTLE) variable |—
hitp loader

< o

http loader attribute

©

http loader attribute

@ e string literal
' HEADERS ‘l l

string literal

Figure 5.4: Load statement grammar.

To load data from network, the http loader can be used. It allows fetching
content via HTTP, where options like the URL and request headers can be
configured in http loader attributes.

An identifier needs to be provided to the load statement so that the raw
data that has been fetched can be referenced for further processing.

5.2.2.4 Extract Statement

When data is fetched via a load statement, it initially is a raw buffer with-
out further interpretation. The buffer needs to be decoded via an extract
statement first before it can be loaded as structured data into the database.

34

extract statement

—@XTRAC% identifier @ identifier MSIN% extract method ’—

extract method

csv extractor
csv extractor

(csv)
@)
()

csv extractor attribute

‘N
2/

csv extractor attribute

6 string literal e
HEADER

boolean

string list

Q
6 string literal)
®

string list

boolean

Figure 5.5: Extract statement grammar.

In this first version of the dashboard tool, the only available extract method
is the csv extractor. However, it is easy to imagine how other methods to
extract data can be added in the future, e.g. providing methods to extract data
from JSON or allowing developers to provide custom modules that transform
a buffer into structured data.

35

The csv extractor allows customizing how the data that is read is handled
by specifying csv extractor attributes. The full list of available options
can be found in Figure 5.5. They can be used to change the delimiter that is
used to separate values, specify a list of columns names for the tabular data,
or change the format of date and timestamp strings and quoted values.

An extract statement needs to specify two identifiers: The first one is used
to reference the resulting structured data after it has been extracted, whereas
the second identifier determines which load statement in our program provides
the raw buffer.

After successful extraction a table is created in the database that contains
the structured data.

5.2.2.5 Query Statement

Once data has been imported into the database, analytical query statements
can be formulated to produce results that reveal more complex relationships
within the dataset. This can be accomplished by e.g. joining multiple relations
or aggregating values.

query statement

sql literal ’—
LCQUER\D—J identifier

Figure 5.6: Query statement grammar.

The query statements are in fact only an instrument to provide an identifier
for SQL queries, as can be interpreted from the grammar in Figure 5.6. To
avoid needing to implement all rules of the SQL grammar, we tokenize entire
SQL statements by a simple heuristic. A sql literal token is recognized
by the lexer using a regular expression that searches for strings that begin
with SELECT or WITH and end with a semicolon. That way, SQL queries and
common table expressions can be embedded.

Using a full-fledged relational database engine and allowing SQL to query
data provides great benefits. The query language is flexible and supports many
features, builds on vast research of query optimization and allows developers
to reuse their existing knowledge on SQL. If they are not well versed in SQL
yet, existing standards and documentation can be used as resources.

36

5.2.2.6 Visualize Statement

After all query statements have been evaluated, the results need to be visualized
in a suitable way. A visualize statement specifies in which way the data
should be displayed.

visualize statement

—@ ISUALIZ% identifier @ identifier WSIN% visualization type ’—

visualization type

N\ J 4

Figure 5.7: Visualize statement grammar.

The visualization types in Figure 5.7 lists all methods that are available
to create a widget on the dashboard. Currently, the visualization mechanism
simply defers to an existing JavaScript library with ready-made components
for data visualization.

In particular Vega Lite was chosen, only that none of its data processing
capabilities are used. Data is pre-processed in our in-memory query engine
and Vega Lite is used purely for the last step of drawing graphical elements.

37

In future releases, more granular options for customizing visualization can
be implemented, instead of relying on these default options. The dashboard
language would then be extended to accept new attributes.

A visualize statement expects two identifiers: The first one is used to display
a label on the dashboard widget, while the second identifier specifies which
query result or relation should be visualized.

38

6 Evaluation

To evaluate our work, we take both a qualitative and a quantitative approach.
The results of the evaluation are presented in this chapter.

The qualitative evaluation assesses in how far our data analytics tool meets
the goal of being interactive, and which functionality the dashboards provide.
In regard to quantitative evaluation, we compare benchmarks of our implemen-
tation and another data analytics library that aims to solve a similar problem.
That way, we can validate in how far our claims of efficiency are justified.

Lastly, we discuss the current limitations of our system.

6.1 Interaction with Dashboard Tool

In this section, we present fragments of the graphical user interface for our data
analytics tool. The order in which we present these fragments corresponds to
the order in which they are used in a typical workflow to create a dashboard.

Initially, a dashboard is a blank canvas. To add widgets for visualization
and to create a data flow that can be provided to these widgets, the general
structure of our programming language must be followed.

Dashboard Program

Parameters DECLARE PARAMETER input_parameter TYPE INTEGER;
input_parameter X
LOAD example_data FROM HTTP (

URL =

Load Statements

example_data X) .
1

&

Extract Statements

EXTRACT example_table FROM example_data USING CSV;

example_table x

Querystatements QUERY example_query AS SELECT % FROM example_table;

example_query X

Vizualizations VISUALIZE example_visualization FROM example_query USING PIE;
example_visualization X

Figure 6.1: Interactive input mode to create a dashboard program. The graphical program represen-
tation on the left is synchronized with the textual representation on the right. When a
statements is hovered in the graphical program structure, the corresponding section in
the source code is highlighted. Various buttons are placed on the structure that allow
removing statements, or adding statements via automatically inserted templates.

39

The user interface for dashboard creators provides tools to build a program,
textually and graphically. The graphical outline of a dashboard program, as
seen on the left in Figure 6.1, helps understand which program statements need
to be provided. When a + or X sign is clicked on the outline, the program
text is modified. In case of addition, a suitable template is inserted after the
last statement of that group. When removing, the corresponding section is
erased from the program text.

The information for which exact location in the text needs to be modified is
transferred with the Protocol Buffer message for each statement. A statement
stores the line and column number of where its first token starts, and where
the last token of the statement ends.

Having access to location information for statements has additional practical
applications in our program editing tool. The location information allows
to associate the program outline and source text in a very direct visual way.
Figure 6.1 demonstrates how hovering a statements results in highlighting the
corresponding section in the source code. That way, it is easy to keep track of
program statements, even when the source code grows in complexity over time.

DECLARE PARAM AS my_parameter TYPE TEXT;

syntax error, unexpected identifier literal,
expecting PARAMETER keyword

Figure 6.2: An inline error message appearing while editing program text. The PARAMETER keyword
has been incorrectly abbreviated, leading to a syntax error. A contextual error message
is provided, hinting at how the problem can be resolved.

When errors happen during development, contextualized diagnostic informa-
tion is invaluable. Reading an error message directly where the error happened
removes guess work for what produced the fault and hence speeds up the
debugging process. Being able to associate an error visually with the source
code is another good example for how the token locations are used.

A concrete instance of this feature can be seen in Figure 6.2, where misspelling
a keyword leads to a syntax error. The contextualized error message provides
help to fix the mistake.

The following examples demonstrate how a dashboard program affects the
user-facing output. The user-facing canvas contains elements that visualize
data and input controls to modify parameters.

A collection of these input elements can be seen in Figure 6.3. The appearance
and behavior of the controls is automatically adjusted, depending on if the
expected input type is numerical, textual, temporal or a file. The values that

40

have been provided by a user can then affect which data should be sourced or
if analytical queries should be reevaluated.

12.34 Some Text
02.02.2020 (9 02.02.2020 B 02:02:02 ©

02:02:02 ® data.csv
DECLARE PARAMETER AS float_parameter TYPE FLOAT;
DECLARE PARAMETER AS text_parameter TYPE TEXT;
DECLARE PARAMETER AS date_parameter TYPE DATE;
DECLARE PARAMETER AS datetime_parameter TYPE DATETIME;
DECLARE PARAMETER AS time_parameter TYPE TIME;
DECLARE PARAMETER AS file_parameter TYPE FILE;

Figure 6.3: Dashboard input parameters. Declaring these specific parameters (bottom) in a dash-
board program results in rendering the input controls (top) on a user-facing canvas. The
first identifier in a parameter declaration appears as a label on the left of an input, while
the second identifier can be referenced as a variable in a dashboard program.

A full example for how all parts of the dashboard programming language work
together is presented in Figure 6.4. The declarative nature of our programming
language should already give a rough idea of what the program accomplishes,
even when unfamiliar with the exact grammar and semantics.

We can start reading the program from the bottom to see what the stated
goal is, and then move further up to understand how it is accomplished.

At the very bottom, two VISUALIZE statements are declared. Reading the
title and visualization type, we can infer that the following widgets should to
appear on the dashboard: One that provides an interface to scroll through raw
tabular weather data, and another one that displays weather data in some
aggregated form in a bar chart.

Next, we determine, where the weather relation comes from. Following the
chain of EXTRACT, LOAD and DECLARE statements at the top of the program,
we can understand that the weather relation is created by loading a local file
in the CSV format.

In the next step, we resolve the more complex weather_by_month relation.
It is defined in a QUERY statement and acts as an alias for a SQL statement.
Again, we start reading the SQL statement from the bottom. It aggregates a
relation that provides weather information along a month only instead of the
full date. We count all occurrences of a weather condition that can be found
for each month.

41

Weather Data

=

A W N

O ® N o v

date
01.01.2012
02.01.2012
03.01.2012
04.01.2012
05.01.2012
06.01.2012
07.01.2012
08.01.2012
09.01.2012
10.01.2012

C /7 u Weather by Month ¢]
precipitation temp_max temp_min wind weather 10
0 12.8 5 47 drizzle
10.9 10.6 28 4.5 rain 0.8
0.8 1.7 7.2 23 rain
. 0.6
203 12.2 5.6 47 rain [
]
1.3 8.9 2.8 6.1 rain @
04
25 4.4 22 22 rain
0 7.2 28 23 rain 0.2
0 10 28 2 sun
.0
4.3 9.4 5 34 rain 0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 6.1 06 34 rain month

DECLARE PARAMETER weather_file TYPE FILE;
LOAD weather_csv FROM FILE $weather_file;
EXTRACT weather FROM weather_csv USING CSV;

QUERY weather_by_month AS WITH weather_monthly AS (
SELECT
MONTH(date) AS month,
LEFT(MONTHNAME(date), 3) AS name,
weather
FROM weather

)1
weather_measurements AS (
SELECT
month,
COUNT(month) AS count
FROM weather_monthly
GROUP BY month
)
SELECT
name AS month,
weather,

COUNT(month) % 1.0 / (
SELECT count
FROM weather_measurements m
WHERE m.month = w.month
) AS share
FROM weather_monthly w
GROUP BY name, month, weather
ORDER BY w.month ASC, weather ASC;

VISUALIZE "Weather Data" FROM weather USING TABLE;

VISUALIZE "Weather by Month" FROM weather_by_month USING BAR;

Figure 6.4: Full example for a dashboard program. This dashboard is a recreation of the stacked bar

chart example [32] of Vega Lite, using our dashboard programming language. Data is
sourced from an example data set [33] of daily weather measurements in Seattle. Execut-
ing the program (bottorn) with the weather data set results in the visualizations (top) to
be drawn on the user-facing dashboard canvas.

42

VAR |

weather
M drizzle
[fog
M rain
1 snow

M sun

To normalize the count, we need to divide the occurrences by the total
amount of weather phenomena that have been observed, resulting in the share
column.

Lastly, we investigate how the remaining relations weather_monthly and
weather_measurements are formed. The weather_monthly relation represents
a month both as a number (so that it can be sorted afterwards) and as the first
three letters of the month name. Additionally, it keeps track of the weather
condition. The weather_measurements relations counts all measurements for
a month that can be found in the weather_monthly relation regardless of
weather condition, so that we can use that value for normalization afterwards.

6.2 Benchmarks

In the last part of Section 6.1, we recreated a dashboard based on a Vega Lite
example. This is a great opportunity to make a faithful comparison between
our implementation and a competitor.

At the same time, this analytical problem is a good real-world example and

demonstrates how data analytics tools would perform in a comparable scenario.

It is moderately complex and requires multiple aggregations to compute the
solution.

The data input and query output for the stacked bar chart visualization
in Figure 6.4 are well defined. The declarative format of both our dashboard
programming language and the Vega Lite specification grammar allows us to
precisely formulate the analytical problem. We then measure how much time
each implementation takes to produce the desired result.

"$schema": ,

"data": {
"values": [...]

}1

"mark": {
"type":

b

"encoding": {
"x": { "title": , "timeUnit": , "field": , "type":
"y': { "title": , "aggregate": , "stack": },
"color": { "field": }

Figure 6.5: Vega Lite specification that produces a fully equivalent result to the “Weather by Month”
visualization in Figure 6.4 when the same input data is provided. This specification has
been used when benchmarking Vega Lite in Figure 6.6.

43

h

time (ms)

Results of these measurements can be observed in Figure 6.6. The graphs
measure how many milliseconds each system took to compute the result, when
provided with weather data that contains as many weather measurements as
indicated by the x-axis.

The same performance measurements have been plotted into two separate
graphs with different axis ranges, so that effects for both small and large data
sets can be observed.

Time spent to execute visualization query

100

80

60

40

20

— Ours (total) Ours (query engine) — Vega Lite — Interactivity threshold

2,000+

1,500 4
m
£

= 1,000
£
5

500 —

< 0 y

T T T T T T 1 T T T T
0 2,000 4,000 6,000 8,000 10,000 0 400,000 800,000
number of entries number of entries

Figure 6.6: Benchmarks to return a query result for the bar chart visualization in Figure 6.4 before
drawing to screen.

The blue line indicates the overall performance of our analytical query engine, including
serializing and deserializing query results between WebAssembly and JavaScript. The
light blue line indicates the performance of our query execution in WebAssembly before
serializing the result. The orange line indicates query performance of Vega Lite. The
green line indicates a common heuristic for latency requirements of systems that should
be perceived as interactive.

The x-axis states the number of weather entries that have been loaded into the input
buffer before query execution.

Benchmarks have been executed in the same environment, using the Chromium
web browser (version 85.0.4183.102) on commodity hardware (Intel® Core™ i7-4770K
CPU@3.5GHz).

The graph on the left lets us conclude that both Vega Lite and our system
deliver low latency when processing up to 10,000 weather entries. Both systems
return results faster than the threshold of 100ms, which is usually perceived as
fluid interaction.

However, it is apparent that Vega Lite delivers way less consistent latencies
than our WebAssembly-based system. This can be explained by just-in-time
compilation and garbage collection of JavaScript engines, which are unpre-
dictable from a programmer’s perspective. Our query engine in WebAssembly
is compiled ahead of time and therefore demonstrates very stable performance.

44

For our system, a discrepancy between pure query performance in WebAssem-
bly and total time spent processing the request exists, as indicated by the
gap between the blue and light blue lines. This is attributes to the costs of
serializing and deserializing query results between JavaScript and WebAssembly
via commonly shared memory. However, our query returns an upper bound of
results when all monthly buckets of the aggregation have been filled. The cost
of serialization is therefore quickly amortized as the number of input entries
grows.

The graph on the right shows that our query engine also eventually exceeds
the latency threshold. However, we are able to comfortably process up to
roughly 175,000 weather entries while maintaining interactivity.

This is made possible by the many optimizations for analytical query work-
loads, as we have discussed extensively in Section 2.3. The workload of the bar
chart query in Figure 6.4 scans sequentially over large amounts of data, which
is precisely what our database engine is optimized for.

In this scenario, our systems performs roughly an order of magnitude better
than our competitor.

6.3 Limitations

Regarding technical limitations, our system architecture in Section 5.1 has
been designed around the limitations for WebAssembly modules in browsers.

No web browser implements an API yet that would allow to manipulate the
DOM and communicate with the host system directly. Therefore, data needs
to be transferred between JavaScript and WebAssembly, either when it should
be loaded from external sources or when query results should be visualized.
This induces costly steps of copying buffers, serialization and deserialization.

Using WebAssembly modules imposes further limits: Primitives for multi-
threading are not implemented by all browsers yet or have been temporarily
disabled due to security vulnerabilities in CPUs when using shared buffers.
Therefore, parallel processing of queries is not possible at the moment.

The most pressing limitation with WebAssembly is that only a maximum
of 4GB memory can be assigned to modules. This is due to the fact that the
specification for 64-bit WebAssembly is not finalized yet. In current browser
implementations, pointers in WebAssembly are limited to 32-bit and can
therefore not address any memory above 4GB. This makes handling files or
intermediate results that are close to or larger than 4GB very inconvenient, as
these would need to be buffered through JavaScript memory.

45

As for the general implementation of our analytics tool, some features have
only been prototyped. Not all visualization types are implemented or can only
be used without further customization options.

The dashboard language interpreter is implemented naively: It materializes
intermediate results for each QUERY statement. It doesn’t implement any
dependency graph that could determine that a result is not used by another
statement, which could save the materialization step.

Error handling by the dashboard language interpreter is currently limited to
syntactical errors, no static semantic analysis is performed before executing a
program. Therefore, most errors can only be caught at runtime.

46

7 Future Work

Interesting directions for our future work can be derived from the limitations
described in Section 6.3.

Once technical limitations around memory size and access to host APIs in
WebAssembly get gradually lifted, it could become a viable option to reverse
the architecture of our data analytics tool. Instead of orchestrating program
flow from JavaScript and using WebAssembly modules for performance-critical
parts of the system, the WebAssembly module could determine the entire
control flow, while only using a limited amount of imported JavaScript APIs.
That way, the predictable and performant code execution of WebAssembly
would cover all code paths, and additionally remove the need to serialize data
between the boundary of JavaScript and WebAssembly.

If memory limitations in WebAssembly should stay for the foreseeable future,
Buffer management implementations could be explored to allow working on
data sets larger than 4GB. However, before exploring that topic, it would
make sense to ensure that data sets of that size can be queried with acceptable
performance in the browser.

Considering different query engine architectures could also be part of our
future work to make query execution in a browser even faster, especially for
large data sets. We have only discussed operator-centric query engines in
this Section 2.3. However, using a data-centric, compiling query engine could
unlock performance improvements of another order of magnitude.

A broader area of future work would be extending the functionality of our
data analytics tool. Providing options to arrange the layout of widgets on
the dashboard, extending the number of supported visualization types or
implementing more decoding formats could be ideas for future improvements.

Making dashboards more interactive from the perspective of a dashboard
user could be an interesting topic. Implementing a system to handle user events
and make granular, partial updates to visualization would be part of that.

47

8 Conclusion

In this thesis, we set the goal to make analytical query processing in a web
browser efficient. We examined how the WebAssembly instruction set works
on the lowest level and why it can be executed faster than JavaScript. To
understand how query performance is optimized for analytical workloads, we
looked at the design choices for in-memory databases, columnar storage, and
vectorized query execution. By inspecting a binary message format, we learned
how query results are transferred with low overhead between the boundaries of
WebAssembly and JavaScript.

Simultaneously, we explored how the process of creating dashboards can be
made more interactive. We looked at how the Document Object Model works
to create graphical user elements in a browser. With the goal of creating a
dashboard programming language, we examined how parsers are constructed.
Based on an architectural system design, we combined a parser for the dash-
board programming language, a query engine in C++, and an implementation
for a simple interpreter. As a result, we created a web-based data analytics
tool.

To evaluate our work, we took both a qualitative and quantitative approach.
By reconstructing example dashboards of popular web-based data analytics
libraries, we concluded that our dashboard programming language is similarly
expressive. In benchmarks measuring query performance for the same analytical
problem, we compared our implementation to a competitor. As a result, we
could validate our considerations about efficient query execution and observed
a tenfold relative performance improvement.

48

Bibliography

Institute for Health Metrics and Evaluation. COVID-19 Projections. 2020.
URL: https://covid19.healthdata.org (visited on 08/20,/2020).

Tableau Desktop. URL: https://www.tableau.com/products/desktop
(visited on 08/20/2020).

What is Power BI Desktop? — Power BI | Microsoft Docs. URL: https:
//docs .microsoft.com/power-bi/fundamentals/desktop-what-is-
desktop (visited on 08/20/2020).

Tableaw Online | SaaS Analytics For Everyone. URL: https://www.
tableau.com/products/cloud-bi (visited on 08/20,/2020).

Gallery | Tableau Public. URL: https://public.tableau.com/s/viz-
of-the-day (visited on 08/20,/2020).

HTML Standard. URL: https://html. spec.whatwg.org (visited on
08/20/2020).

Scalable Vector Graphics (SVG) 2. URL: https://www.w3.org/TR/SVG
(visited on 08/20/2020).

CSS Snapshot 2018. URL: https://www.w3.org/TR/CSS (visited on
08/20/2020).

DOM Standard. URL: https://dom . spec . whatwg . org (visited on
08/20/2020).

ECMAScript® 2021 Language Specification. URL: https://tc39.es/
ecma262 (visited on 08/20/2020).

asm.js. URL: http://asmjs.org/spec/latest (visited on 08/20/2020).

WebAssembly Core Specification. URL: https://www.w3.org/TR/wasm-
core (visited on 08/20/2020).

André Eickler Alfons Kemper. Datenbanksysteme. Eine Einfiihrung.
10th ed. Oldenbourg Verlag, 2015. 1SBN: 978-3-11-044375-2.

Cristian Diaconu et al. “Hekaton: SQL Server’s Memory-Optimized
OLTP Engine.” In: Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’13. New York, New York,
USA: Association for Computing Machinery, 2013, pp. 1243-1254. ISBN:
9781450320375. DOI: 10.1145/2463676.2463710.

Franz Farber et al. “SAP HANA Database: Data Management for Modern
Business Applications.” In: SIGMOD Rec. 40.4 (Jan. 2012), pp. 45-51.
1SSN: 0163-5808. DOI: 10.1145/2094114.2094126.

49

https://covid19.healthdata.org
https://www.tableau.com/products/desktop
https://docs.microsoft.com/power-bi/fundamentals/desktop-what-is-desktop
https://docs.microsoft.com/power-bi/fundamentals/desktop-what-is-desktop
https://docs.microsoft.com/power-bi/fundamentals/desktop-what-is-desktop
https://www.tableau.com/products/cloud-bi
https://www.tableau.com/products/cloud-bi
https://public.tableau.com/s/viz-of-the-day
https://public.tableau.com/s/viz-of-the-day
https://html.spec.whatwg.org
https://www.w3.org/TR/SVG
https://www.w3.org/TR/CSS
https://dom.spec.whatwg.org
https://tc39.es/ecma262
https://tc39.es/ecma262
http://asmjs.org/spec/latest
https://www.w3.org/TR/wasm-core
https://www.w3.org/TR/wasm-core
https://doi.org/10.1145/2463676.2463710
https://doi.org/10.1145/2094114.2094126

[16]

[21]

[24]

[25]

Alfons Kemper and Thomas Neumann. “HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots.”
In: Proceedings of the 2011 IEEE 27th International Conference on Data
Engineering. ICDE ’11. USA: IEEE Computer Society, 2011, pp. 195-206.
ISBN: 9781424489596. DOI: 10.1109/ICDE.2011.5767867.

Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. “Breaking
the Memory Wall in MonetDB.” In: Commun. ACM 51.12 (Dec. 2008),
pp- 77-85. 1ssN: 0001-0782. DOI: 10.1145/1409360.1409380.

Mark Raasveldt and Hannes Miihleisen. “DuckDB: An Embeddable Ana-
lytical Database.” In: Proceedings of the 2019 International Conference on
Management of Data. SIGMOD ’19. Amsterdam, Netherlands: Associa-
tion for Computing Machinery, 2019, pp. 1981-1984. 1SBN: 9781450356435.
DOI: 10.1145/3299869.3320212.

D. Richard Hipp, Dan Kennedy, and Joe Mistachkin. About SQLite. URL:
https://www.sqlite.org/about.html (visited on 08/20/2020).

Marcin Zukowski and Peter Boncz. “From X100 to Vectorwise: Opportu-
nities, Challenges and Things Most Researchers Do Not Think About.”
In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’12. Scottsdale, Arizona, USA: Associa-
tion for Computing Machinery, 2012, pp. 861-862. ISBN: 9781450312479.
DOI: 10.1145/2213836.2213967.

Alon Zakai. “Emscripten: An LLVM-to-JavaScript Compiler.” In: Proceed-
ings of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion. OOPSLA
"11. Portland, Oregon, USA: Association for Computing Machinery, 2011,
pp- 301-312. 1SBN: 9781450309424. DOI: 10.1145/2048147 .2048224.

SQLite compiled to JavaScript. URL: https://github.com/sql-js/sql.
js (visited on 08/20/2020).

Kareem El Gebaly and Jimmy Lin. “In-Browser Interactive SQL Analyt-
ics with Afterburner.” In: Proceedings of the 2017 ACM International
Conference on Management of Data. SIGMOD ’17. Chicago, Illinois,
USA: Association for Computing Machinery, 2017, pp. 1623-1626. 1SBN:
9781450341974. por: 10.1145/3035918.3058736.

M. Bostock, V. Ogievetsky, and J. Heer. “D? Data-Driven Documents.”
In: IEEE Transactions on Visualization and Computer Graphics 17.12
(2011), pp. 2301-2309.

A. Satyanarayan et al. “Vega-Lite: A Grammar of Interactive Graphics.”
In: IEEFE Transactions on Visualization and Computer Graphics 23.1
(2017), pp. 341-350.

Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation.” In: San Jose, CA, USA,
Mar. 2004, pp. 75-88.

50

https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/1409360.1409380
https://doi.org/10.1145/3299869.3320212
https://www.sqlite.org/about.html
https://doi.org/10.1145/2213836.2213967
https://doi.org/10.1145/2048147.2048224
https://github.com/sql-js/sql.js
https://github.com/sql-js/sql.js
https://doi.org/10.1145/3035918.3058736

Protocol Buffers | Google Developers. URL: https://developers.google.
com/protocol-buffers (visited on 08/20/2020).

The Fast Lexical Analyzer — scanner generator for lexing in C and C++.
URL: https://github.com/westes/flex (visited on 08/20,/2020).

Bison — GNU Project — Free Software Foundation. URL: https://wuw.
gnu.org/software/bison (visited on 08/20/2020).

lex — generate programs for lexical tasks. URL: https://pubs.opengroup.
org/onlinepubs/009695399/utilities/lex.html (visited on 08/20/2020).

yacc — yet another compiler compiler. URL: https://pubs.opengroup.
org/onlinepubs/009695399/utilities/yacc.html (visited on 08/20/2020).

Stacked Bar Chart with Rounded Corners | Vega-Lite. URL: https://
vega.github.io/vega-lite/examples/stacked_bar_count_corner_
radius_mark (visited on 08/20/2020).

Seattle Weather Example Data. URL: https://vega.github.io/editor/
data/seattle-weather.csv (visited on 08/20/2020).

o1

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://github.com/westes/flex
https://www.gnu.org/software/bison
https://www.gnu.org/software/bison
https://pubs.opengroup.org/onlinepubs/009695399/utilities/lex.html
https://pubs.opengroup.org/onlinepubs/009695399/utilities/lex.html
https://pubs.opengroup.org/onlinepubs/009695399/utilities/yacc.html
https://pubs.opengroup.org/onlinepubs/009695399/utilities/yacc.html
https://vega.github.io/vega-lite/examples/stacked_bar_count_corner_radius_mark
https://vega.github.io/vega-lite/examples/stacked_bar_count_corner_radius_mark
https://vega.github.io/vega-lite/examples/stacked_bar_count_corner_radius_mark
https://vega.github.io/editor/data/seattle-weather.csv
https://vega.github.io/editor/data/seattle-weather.csv

	Contents
	Introduction
	Data Analytics and Visualization
	Analytics Desktop Software
	Graphical User Applications in Web Browsers
	Distribution Model
	HTML, SVG and CSS
	JavaScript
	WebAssembly

	Databases for Analytical Query Workloads
	In-Memory Databases
	Columnar Data Storage
	Vectorized Query Execution

	Related Work
	Compiler Toolchain and Development Tools
	C++/Emscripten
	Protocol Buffers
	Flex and Bison

	Interactive Dashboards
	Architectural Overview
	Dashboard Programming Language
	Language Concept and Goals
	Grammar and Language Features
	Program
	Parameter Declaration
	Load Statement
	Extract Statement
	Query Statement
	Visualize Statement

	Evaluation
	Interaction with Dashboard Tool
	Benchmarks
	Limitations

	Future Work
	Conclusion
	Bibliography

